
More Scheduling and
Interprocess communication

ECE 469, Mar 06

Aravind Machiry

1

Recap: Scheduling Policies Advantages

FIFO

RR

SJF

Response time

Throughput

Avg. turnaround time

Fairness

2

Priority Scheduling

● To accommodate the spirits of SJF/RR/FIFO

● The method
● Assign each process a priority

● Run the process with highest priority in ready queue first
● Use FIFO for processes with equal priority

● Adjust priority dynamically
● To deal with all issues: e.g. aging, I/O wait raises priority

3

Priority Scheduling
● Who sets the priorities

● Internally by OS
● I/O to computation ratio (can be dynamic)

● Memory requirement (can be dynamic)

● Time constraints (e.g. real-time systems)

● Externally by users/sysadm
● Importance

● Funds paid for

● Being nice

● Dynamically adjusting priority is tricky

4

Priority Scheduling
● Advantages

● Flexibility.

● Disadvantages
● Starvation: A low priority process might never get to run.

5

Multiple Queue Scheduling
● Maintain multiple queues of different priorities.

● Background queue vs Foreground queue

● Prefer jobs in higher priority queues.

6

Multiple Queue Scheduling

7

Multiple Queue Scheduling

● Challenges:
● How to assign process to queues?

● How to schedule processes within a queue?

● How to switch between queues?

8

Multiple Queue Scheduling

● How to assign processes to queues?

● Based on User:
● Sysadmin vs Regular user

● Based on Type:
● Foreground vs. background.

9

Multiple Queue Scheduling

● How to schedule processes within a queue?

● All queues have same scheduling policy.

● Scheduling policy varies with queues:

● Foreground queue - Need to be responsive:
▪ Round Robin

● Background queue - Shorter turnaround time:
▪ SJF

10

Multiple Queue Scheduling

● How to switch between queues?

● Fixed priority preemptive scheduling (high-pri queue trumps other)

● Time-slice between queues

11

Multiple Queue Scheduling

● Pros:

12

Multiple Queue Scheduling

● Pros:
● Low scheduling overhead

● Jobs do not move across queues

13

Multiple Queue Scheduling

● Pros:
● Low scheduling overhead

● Jobs do not move across queues

● Cons:

14

Multiple Queue Scheduling

● Pros:
● Low scheduling overhead

● Jobs do not move across queues

● Cons:
● Processes permanently assigned to one queue – not flexible

● Program behavior may change

● E.g. can switch between I/O bound and CPU bound

🡪 Need some learning/adaptation at runtime

● Starvation cannot be easily handled

🡪 Need some learning/adaptation at runtime

15

Multilevel Feedback Queue (MLFQ)

● Problem: how to change priority?

● Jobs start at highest priority queue

● Feedback
● Priority Decreases: If a job uses up an entire time slice while running, its priority is

reduced (i.e., it moves down one queue).

● Priority Unchanged: If a job gives up the CPU before the time slice is up, it stays at the
same priority level.

● Priority Increases: After a long time period, move all the jobs in the system to the
topmost queue (aging)

16

Multilevel Feedback Queue (MLFQ)

Q2

Q1

Q0

17

Multilevel Feedback Queue (MLFQ)

CQ2

Q1

Q0

18

Multilevel Feedback Queue (MLFQ)

CQ2

Q1

Q0

Time Slice

19

Multilevel Feedback Queue (MLFQ)

C

C

Q2

Q1

Q0

Time Slice

20

Multilevel Feedback Queue (MLFQ)

C

C

C

Q2

Q1

Q0

Time Slice

21

MLFQ: Long job and short jobs in
between

Q2

Q1

Q0

22

MLFQ: Long job and short jobs in
between

 C

Q2

Q1

Q0

23

MLFQ: Long job and short jobs in
between

 C

Q2

Q1

Q0

A

24

MLFQ: Long job and short jobs in
between

 C C

Q2

Q1

Q0

A

25

MLFQ: Long job and short jobs in
between

 C C

Q2

Q1

Q0

A B

26

MLFQ: Long job and short jobs in
between

 C C

Q2

Q1

Q0

A B

B

27

MLFQ: Long job and short jobs in
between

 C C C

Q2

Q1

Q0

A B

B

28

MLFQ: Long job and short jobs in
between

 C C C

Q2

Q1

Q0

A B

B

Leave I/O bound and
interactive processes in
higher-priority queue

29

MLFQ: Long job and short jobs in
between

 C C C

Q2

Q1

Q0

A B

B

Leave I/O bound and
interactive processes in
higher-priority queue
Potential problem?
Starvation

30

MLFQ: Long job and short jobs in
between + boost

Q2

Q1

Q0

Boost Time : Low priority jobs moved higher at regular intervals

31

MLFQ: Long job and short jobs in
between + boost

 C

Q2

Q1

Q0

Boost Time : Low priority jobs moved higher at regular intervals

32

MLFQ: Long job and short jobs in
between + boost

 C

Q2

Q1

Q0

A

Boost Time : Low priority jobs moved higher at regular intervals

33

MLFQ: Long job and short jobs in
between + boost

 C C

Q2

Q1

Q0

A

Boost Time : Low priority jobs moved higher at regular intervals

34

MLFQ: Long job and short jobs in
between + boost

 C C

Q2

Q1

Q0

A

Boost Time : Low priority jobs moved higher at regular intervals

C

35

MLFQ: Long job and short jobs in
between + boost

 C C

Q2

Q1

Q0

A

Boost Time : Low priority jobs moved higher at regular intervals

C

C

36

MLFQ: Long job and short jobs in
between + boost

 C C

Q2

Q1

Q0

A B

Boost Time : Low priority jobs moved higher at regular intervals

C

C

37

MLFQ: Long job and short jobs in
between + boost

 C C

Q2

Q1

Q0

A B

B

Boost Time : Low priority jobs moved higher at regular intervals

C

C

38

MLFQ: Long job and short jobs in
between + boost

 C C C

Q2

Q1

Q0

A B

B

Boost Time : Low priority jobs moved higher at regular intervals

C

C

39

Multiprocessor and Cluster

CPU CPU CPU…

L2
L1

L2
L1

L2
L1

Memory

Multiprocessor architecture
• L2 cache coherence
• A single “image” OS

…

External
Network

Cluster/Multicomputer
• Distributed memory
• An OS on each box

40

Multiprocessor/Cluster Scheduling

● New design issue: process/thread inter-dependence
● Threads of the same process may synchronize

● Processes of the same job may send/recv messages

41

Multiprocessor/Cluster Scheduling:
Example approach

● Gang scheduling (coscheduling)

42

Multiprocessor/Cluster Scheduling:
Example approach

● Gang scheduling (coscheduling)
● Related process and threads run at the same time.

43

Multiprocessor/Cluster Scheduling:
Example approach

● Gang scheduling (coscheduling)
● Related process and threads run at the same time.

● Threads of same process will run at same time on
multiprocessor.

44

Multiprocessor/Cluster Scheduling:
Example approach

● Gang scheduling (coscheduling)
● Related process and threads run at the same time.

● Threads of same process will run at same time on
multiprocessor.

● Processes of same application run at the same time on cluster.

45

Multiprocessor/Cluster Scheduling:
Example approach

● Dedicated processor assignment
● Threads will be running on specific processors to completion

● Pros / cons?
● Good for reducing cache misses

● Bad for load balance / fairness

46

CPU scheduling: Final Thoughts

● Mechanism is easy, policy is hard
● Jobs have diverse characteristics

● 4 performance metrics

● Don’t know about future

● Hard to analyze even when narrowing down metric/job
nature

47

True/False

● “A CPU scheduling algorithm that minimizes avg turnaround
time cannot lead to starvation.”

● “Among all CPU scheduling algorithms, Round Robin always
gives the worse average turnaround time.”

48

Scheduling Algorithms in OSes
Operating System Preemption Algorithm
Windows 3.1x None Cooperative Scheduler

Windows 95Windows 95,
98Windows 95, 98, Me Half Preemptive for 32-bit processes,

Cooperative Scheduler for 16-bit processes

Windows NT (2000, XP,
Vista, 7, and Server) Yes Multilevel feedback queue

Mac OS pre-9 None Cooperative Scheduler

Mac OS 9 Some Preemptive for MP tasks, Cooperative
Scheduler for processes and threads

Mac OS X Yes Multilevel feedback queue

Linux pre-2.6 Yes Multilevel feedback queue

Linux 2.6-2.6.23 Yes O(1) scheduler

Linux post-2.6.23 Yes Completely Fair Scheduler

Solaris Yes Multilevel feedback queue

NetBSD Yes Multilevel feedback queue

FreeBSD Yes Multilevel feedback queue

http://en.wikipedia.org/wiki/Windows_3.1x
http://en.wikipedia.org/wiki/Cooperative_Scheduler
http://en.wikipedia.org/wiki/Windows_95
http://en.wikipedia.org/wiki/Windows_98
http://en.wikipedia.org/wiki/Windows_Me
http://en.wikipedia.org/wiki/Cooperative_Scheduler
http://en.wikipedia.org/wiki/Windows_NT
http://en.wikipedia.org/wiki/Multilevel_feedback_queue
http://en.wikipedia.org/wiki/Mac_OS
http://en.wikipedia.org/wiki/Cooperative_Scheduler
http://en.wikipedia.org/wiki/Mac_OS
http://en.wikipedia.org/wiki/Cooperative_Scheduler
http://en.wikipedia.org/wiki/Cooperative_Scheduler
http://en.wikipedia.org/wiki/Mac_OS_X
http://en.wikipedia.org/wiki/Multilevel_feedback_queue
http://en.wikipedia.org/wiki/Linux
http://en.wikipedia.org/wiki/Multilevel_feedback_queue
http://en.wikipedia.org/wiki/Linux
http://en.wikipedia.org/wiki/O(1)_scheduler
http://en.wikipedia.org/wiki/Linux
http://en.wikipedia.org/wiki/Completely_Fair_Scheduler
http://en.wikipedia.org/wiki/Solaris_(operating_system)
http://en.wikipedia.org/wiki/Multilevel_feedback_queue
http://en.wikipedia.org/wiki/NetBSD
http://en.wikipedia.org/wiki/Multilevel_feedback_queue
http://en.wikipedia.org/wiki/FreeBSD
http://en.wikipedia.org/wiki/Multilevel_feedback_queue

49

Process

● A process contains everything needed for execution

● An address space (defining all the code and data pages)

● OS resources (e.g., open files) and accounting information

● Execution state (PC (program counter), SP (stack pointer), regs, etc.)

50

Web Server Example

● How does a web server handle 1 request?

● A web server needs to handle many concurrent requests

● Solution 1:
● Have the parent process fork as many processes as needed

● Processes communicate with each other via inter-process
communication

51

Multiple Processes

Kernel

Heap

Others

UXSTACK

USTACK
EMPTY

Free…

Global
int counter;

Program

Parent

EMPTY

52

Multiple Processes

Kernel

Heap

Others

UXSTACK

USTACK
EMPTY

Free…

Global
int counter;

Program

Kernel

Heap

Others

UXSTACK

USTACK
EMPTY

Free…

Global
int counter;

Program

fork()

Parent Child

EMPTY EMPTY

53

Multiple Processes

Kernel

Heap

Others

UXSTACK

USTACK
EMPTY

Free…

Global
int counter;

Program

Kernel

Heap

Others

UXSTACK

USTACK
EMPTY

Free…

Global
int counter;

Program

fork()

Parent Child

EMPTY EMPTY

Fork() creates new process by copying memory
space
Process creates a new PRIVATE memory space

54

Multiple Processes

Kernel

Heap

Others

UXSTACK

USTACK
EMPTY

Free…

Global
int counter;

Program

Kernel

Heap

Others

UXSTACK

USTACK
EMPTY

Free…

Global
int counter;

Program

fork()

Parent Child

EMPTY EMPTY

Fork() creates new process by copying memory
space
Process creates a new PRIVATE memory space

55

Multiple Processes

Kernel

Heap

Others

UXSTACK

USTACK
EMPTY

Free…

Global
int counter;

Program

Kernel

Heap

Others

UXSTACK

USTACK
EMPTY

Free…

Global
int counter;

Program

fork()

Parent Child

Not
sharing

variables

EMPTY EMPTY

Fork() creates new process by copying memory
space
Process creates a new PRIVATE memory space

56

All these processes may need to
communicate

● How can two processes communicate?

57

How do Process communicate?
● At process creation time

● Parents get one chance to pass everything at fork()

58

All these processes may need to
communicate

● How can two processes communicate?
● Different machine?

59

All these processes may need to
communicate

● How can two processes communicate?
● Different machine?

● Over network

60

All these processes may need to
communicate

● How can two processes communicate?
● Different machine?

● Over network
● Same machine?

61

All these processes may need to
communicate

● How can two processes communicate?
● Different machine?

● Over network
● Same machine?

● Need to have some common resource:

62

All these processes may need to
communicate

● How can two processes communicate?
● Different machine?

● Over network
● Same machine?

● Need to have some common resource:
▪ Files (pipes)

63

All these processes may need to
communicate

● How can two processes communicate?
● Different machine?

● Over network
● Same machine?

● Need to have some common resource:
▪ Files (pipes)
▪ Shared Memory

64

All these processes may need to
communicate

● How can two processes communicate?
● Different machine?

● Over network
● Same machine?

● Need to have some common resource:
▪ Files (pipes)
▪ Shared Memory
▪ Message boxes

65

All these processes may need to
communicate

● How can two processes communicate?
● Different machine?

● Over network
● Same machine?

● Need to have some common resource:
▪ Files (pipes)
▪ Shared Memory
▪ Message boxes

Inter process communication
(IPC)

66

IPC with Messages and MailBoxes

● Messages provide for communication without shared data
● One process or the other owns the data, (guaranteed) never two at

the same time

● Think about USPS

67

IPC with Messages and MailBoxes

Process

Sender

Process

Receiver

68

Why Messages?

● Many types of applications fit into the model of processing a sequential
flow of information

● Communication across address spaces – no side effects
● Less error-prone? (commonly believed, but not necessarily true!)

● They might have been written by different programmers who aren’t
familiar with code

● They might not trust each other

● They may be running on different machines!

● Examples?

69

Message Passing API
● Generic API

● send(mailbox, msg)

● recv(mailbox, msg)

● What is a mailbox?
● A buffer where messages are stored between the time they are sent

and the time when they are received

● What should “msg” be?
● Fixed size msgs

● Variable sized msgs: need to specify sizes

70

Implementation Options with Buffering

● When should send() return?

● When should recv() return?

71

Send
● Fully Synchronous

● Will not return until data is received by the receiving process

72

Send
● Fully Synchronous

● Will not return until data is received by the receiving process

● Synchronous
● Will not return until data is received by the mailbox

● Block on full buffer

73

Send
● Fully Synchronous

● Will not return until data is received by the receiving process

● Synchronous
● Will not return until data is received by the mailbox

● Block on full buffer

● Asynchronous
● Return immediately

● Completion
● Require the application to check status (application polls)

● Notify the application (OS sends interrupt)

74

Receive

● Synchronous
● Return data if there is a message

● Block on empty buffer

75

Receive

● Synchronous
● Return data if there is a message

● Block on empty buffer

● Asynchronous
● Return data if there is a message

● Return status if there is no message (probe)

76

Implementing Mailboxes

● What is the conceptual problem for OS implementation
here?
● Assume sender and receiver are on the same machine

77

Implementing Mailboxes

● What is the conceptual problem for OS implementation
here?
● Assume sender and receiver are on the same machine:

● Buffering
● Managing mailboxes:

▪ between a pair or processes?
▪ One for each process?

● Process Termination

78

Buffering

● No buffering
● Sender must wait until the receiver receives the message
● Rendezvous on each message

● Bounded buffer
● Finite size
● Sender blocks when the buffer is full
● Receiver blocks when the buffer is empty
● Using lock/condition variable (or semaphore)

79

Direct Communication

● Each process must name the sending or receiving process

● A communication link
● is set up between the pair of processes

● is associated with exactly two processes

● exactly one link between each pair of processes

P: send(process Q, msg)

Q: recv(process P, msg)

80

Producer-Consumer with Message
passing

Producer(){

 while (1) {

 …

 produce item

 …

 send(consumer, item);

 }

}

Consumer(){

 while (1) {

 recv(producer, item);

 …

 consume item

 …

 }

}

81

Indirect Communication

● Use a “mailbox” or “ports” to allow many-to-many communication
● Mailbox typically owned by the OS

● Requires open/close a mailbox before allowed to use it

● A “link”
● is set up among processes only if they have a shared mailbox
● Can be associated with more than two processes

P: open (mailbox); send(mailbox, msg);
 close(mailbox)
Q: open (mailbox); recv(mailbox, msg);
 close(mailbox)

82

Process Termination

● S has terminated
● Problem: R may be blocked forever

● Solution: R pings S once a while

● R has terminated
● Problem: S runs out buffer and will be blocked forever
● Solution: S checks on R occasionally

Process

Sender

Process

Receiver

83

IPC Big Debate: Message passing v/s
Shared memory

● Two programming models are equally powerful

● But result in very different-looking programming styles

● Do you think shared-data or message-passing is easier to work with?
● Programming? Debugging?

● What about concurrent programming across machines?
● Message passing is more natural

● Shared memory can still be simulated in software
● Distributed Shared Memory (DSM) – hot topic in 80-90’s, coming back these years

