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Recap: Scheduling Policies Advantages

FIFO

RR

SJF

Response time

Throughput

Avg. turnaround time

Fairness 
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Priority Scheduling

● To accommodate the spirits of SJF/RR/FIFO

● The method
● Assign each process a priority

● Run the process with highest priority in ready queue first
● Use FIFO for processes with equal priority

● Adjust priority dynamically
● To deal with all issues: e.g. aging, I/O wait raises priority
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Priority Scheduling
● Who sets the priorities

● Internally by OS
● I/O to computation ratio (can be dynamic)

● Memory requirement (can be dynamic)

● Time constraints (e.g. real-time systems)

● Externally by users/sysadm
● Importance

● Funds paid for

● Being nice

● Dynamically adjusting priority is tricky
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Priority Scheduling
● Advantages

● Flexibility. 

● Disadvantages
● Starvation: A low priority process might never get to run.
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Multiple Queue Scheduling
● Maintain multiple queues of different priorities.

● Background queue vs Foreground queue

● Prefer jobs in higher priority queues.
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Multiple Queue Scheduling
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Multiple Queue Scheduling

● Challenges:
● How to assign process to queues? 

● How to schedule processes within a queue?

● How to switch between queues?
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Multiple Queue Scheduling

● How to assign processes to queues?

● Based on User:
● Sysadmin vs Regular user

● Based on Type:
● Foreground vs. background.
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Multiple Queue Scheduling

● How to schedule processes within a queue?

● All queues have same scheduling policy.

● Scheduling policy varies with queues:

● Foreground queue - Need to be responsive: 
▪ Round Robin 

● Background queue - Shorter turnaround time:
▪ SJF
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Multiple Queue Scheduling

● How to switch between queues?

● Fixed priority preemptive scheduling (high-pri queue trumps other)

● Time-slice between queues
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Multiple Queue Scheduling

● Pros:
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Multiple Queue Scheduling

● Pros:
● Low scheduling overhead

● Jobs do not move across queues
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Multiple Queue Scheduling

● Pros:
● Low scheduling overhead

● Jobs do not move across queues

● Cons: 
● Processes permanently assigned to one queue – not flexible

● Program behavior may change

● E.g. can switch between I/O bound and CPU bound

🡪 Need some learning/adaptation at runtime 

● Starvation cannot be easily handled 

🡪 Need some learning/adaptation at runtime
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Multilevel Feedback Queue (MLFQ)

● Problem: how to change priority?

● Jobs start at highest priority queue

● Feedback
● Priority Decreases: If a job uses up an entire time slice while running, its priority is 

reduced (i.e., it moves down one queue). 

● Priority Unchanged: If a job gives up the CPU before the time slice is up, it stays at the 
same priority level.

● Priority Increases: After a long time period, move all the jobs in the system to the 
topmost queue (aging)
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Multilevel Feedback Queue (MLFQ)
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MLFQ: Long job and short jobs in 
between
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MLFQ: Long job and short jobs in 
between
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MLFQ: Long job and short jobs in 
between
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Leave I/O bound and 
interactive processes in 
higher-priority queue
Potential problem? 
Starvation



30

MLFQ: Long job and short jobs in 
between + boost

Q2

Q1

Q0

Boost Time : Low priority jobs moved higher at regular intervals 



31

MLFQ: Long job and short jobs in 
between + boost

    C

Q2

Q1

Q0

Boost Time : Low priority jobs moved higher at regular intervals 



32

MLFQ: Long job and short jobs in 
between + boost

    C

Q2

Q1

Q0

A

Boost Time : Low priority jobs moved higher at regular intervals 



33

MLFQ: Long job and short jobs in 
between + boost

    C C

Q2

Q1

Q0

A

Boost Time : Low priority jobs moved higher at regular intervals 



34

MLFQ: Long job and short jobs in 
between + boost

    C C

Q2

Q1

Q0

A

Boost Time : Low priority jobs moved higher at regular intervals 

C



35

MLFQ: Long job and short jobs in 
between + boost

    C C

Q2

Q1

Q0

A

Boost Time : Low priority jobs moved higher at regular intervals 

C

C



36

MLFQ: Long job and short jobs in 
between + boost

    C C

Q2

Q1

Q0

A B

Boost Time : Low priority jobs moved higher at regular intervals 

C

C



37

MLFQ: Long job and short jobs in 
between + boost

    C C

Q2

Q1

Q0

A B

B

Boost Time : Low priority jobs moved higher at regular intervals 

C

C



38

MLFQ: Long job and short jobs in 
between + boost

  C    C C

Q2

Q1

Q0

A B

B

Boost Time : Low priority jobs moved higher at regular intervals 

C

C



39

Multiprocessor and Cluster

CPU CPU CPU…

L2
L1

L2
L1

L2
L1

Memory

Multiprocessor architecture
• L2 cache coherence
• A single “image” OS

…

External
Network

Cluster/Multicomputer
• Distributed memory
• An OS on each box
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Multiprocessor/Cluster Scheduling

● New design issue: process/thread inter-dependence
● Threads of the same process may synchronize

● Processes of the same job may send/recv messages
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Multiprocessor/Cluster Scheduling:
Example approach

● Gang scheduling (coscheduling)
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Multiprocessor/Cluster Scheduling:
Example approach

● Gang scheduling (coscheduling)
● Related process and threads run at the same time.

● Threads of same process will run at same time on 
multiprocessor.

● Processes of same application run at the same time on cluster.



45

Multiprocessor/Cluster Scheduling:
Example approach

● Dedicated processor assignment
● Threads will be running on specific processors to completion

● Pros / cons?
● Good for reducing cache misses

● Bad for load balance / fairness
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CPU scheduling: Final Thoughts

● Mechanism is easy, policy is hard
● Jobs have diverse characteristics

● 4 performance metrics

● Don’t know about future

● Hard to analyze even when narrowing down metric/job 
nature
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True/False

● “A CPU scheduling algorithm that minimizes avg turnaround 
time cannot lead to starvation.”

● “Among all CPU scheduling algorithms, Round Robin always 
gives the worse average turnaround time.”
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Scheduling Algorithms in OSes
Operating System Preemption Algorithm
Windows 3.1x None Cooperative Scheduler

Windows 95Windows 95, 
98Windows 95, 98, Me Half Preemptive for 32-bit processes, 

Cooperative Scheduler for 16-bit processes

Windows NT (2000, XP, 
Vista, 7, and Server) Yes Multilevel feedback queue

Mac OS pre-9 None Cooperative Scheduler

Mac OS 9 Some Preemptive for MP tasks, Cooperative 
Scheduler for processes and threads

Mac OS X Yes Multilevel feedback queue

Linux pre-2.6 Yes Multilevel feedback queue

Linux 2.6-2.6.23 Yes O(1) scheduler

Linux post-2.6.23 Yes Completely Fair Scheduler

Solaris Yes Multilevel feedback queue

NetBSD Yes Multilevel feedback queue

FreeBSD Yes Multilevel feedback queue

http://en.wikipedia.org/wiki/Windows_3.1x
http://en.wikipedia.org/wiki/Cooperative_Scheduler
http://en.wikipedia.org/wiki/Windows_95
http://en.wikipedia.org/wiki/Windows_98
http://en.wikipedia.org/wiki/Windows_Me
http://en.wikipedia.org/wiki/Cooperative_Scheduler
http://en.wikipedia.org/wiki/Windows_NT
http://en.wikipedia.org/wiki/Multilevel_feedback_queue
http://en.wikipedia.org/wiki/Mac_OS
http://en.wikipedia.org/wiki/Cooperative_Scheduler
http://en.wikipedia.org/wiki/Mac_OS
http://en.wikipedia.org/wiki/Cooperative_Scheduler
http://en.wikipedia.org/wiki/Cooperative_Scheduler
http://en.wikipedia.org/wiki/Mac_OS_X
http://en.wikipedia.org/wiki/Multilevel_feedback_queue
http://en.wikipedia.org/wiki/Linux
http://en.wikipedia.org/wiki/Multilevel_feedback_queue
http://en.wikipedia.org/wiki/Linux
http://en.wikipedia.org/wiki/O(1)_scheduler
http://en.wikipedia.org/wiki/Linux
http://en.wikipedia.org/wiki/Completely_Fair_Scheduler
http://en.wikipedia.org/wiki/Solaris_(operating_system)
http://en.wikipedia.org/wiki/Multilevel_feedback_queue
http://en.wikipedia.org/wiki/NetBSD
http://en.wikipedia.org/wiki/Multilevel_feedback_queue
http://en.wikipedia.org/wiki/FreeBSD
http://en.wikipedia.org/wiki/Multilevel_feedback_queue
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Process

● A process contains everything needed for execution 

● An address space (defining all the code and data pages) 

● OS resources (e.g., open files) and accounting information 

● Execution state (PC (program counter), SP (stack pointer), regs, etc.) 
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Web Server Example

● How does a web server handle 1 request?

● A web server needs to handle many concurrent requests 

● Solution 1: 
● Have the parent process fork as many processes as needed

● Processes communicate with each other via inter-process 
communication 
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Multiple Processes

Kernel

Heap

Others

UXSTACK

USTACK
EMPTY

Free…

Global
int counter;

Program

Parent

EMPTY
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Multiple Processes

Kernel

Heap

Others

UXSTACK

USTACK
EMPTY

Free…

Global
int counter;

Program

Kernel

Heap

Others

UXSTACK

USTACK
EMPTY

Free…

Global
int counter;

Program

fork()

Parent Child

Not 
sharing

variables

EMPTY EMPTY

Fork() creates new process by copying memory 
space
Process creates a new PRIVATE memory space
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All these processes may need to 
communicate

● How can two processes communicate?
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How do Process communicate?
● At process creation time

● Parents get one chance to pass everything at fork() 
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All these processes may need to 
communicate

● How can two processes communicate?
● Different machine?
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All these processes may need to 
communicate

● How can two processes communicate?
● Different machine?

● Over network
● Same machine?

● Need to have some common resource:
▪ Files (pipes)
▪ Shared Memory
▪ Message boxes

Inter process communication  
(IPC)
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IPC with Messages and MailBoxes

● Messages provide for communication without shared data
● One process or the other owns the data, (guaranteed) never two at 

the same time

● Think about USPS
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IPC with Messages and MailBoxes

Process

Sender

Process

Receiver
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Why Messages?

● Many types of applications fit into the model of processing a sequential 
flow of information

● Communication across address spaces – no side effects
● Less error-prone? (commonly believed, but not necessarily true!)

● They might have been written by different programmers who aren’t 
familiar with code

● They might not trust each other

● They may be running on different machines!

● Examples?
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Message Passing API
● Generic API

● send( mailbox, msg )

● recv( mailbox, msg )

● What is a mailbox?
● A buffer where messages are stored between the time they are sent 

and the time when they are received

● What should “msg” be?
● Fixed size msgs

● Variable sized msgs: need to specify sizes
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Implementation Options with Buffering

● When should send() return?

● When should recv() return?
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Send
● Fully Synchronous

● Will not return until data is received by the receiving process
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Send
● Fully Synchronous

● Will not return until data is received by the receiving process

● Synchronous
● Will not return until data is received by the mailbox

● Block on full buffer

● Asynchronous
● Return immediately

● Completion
● Require the application to check status (application polls)

● Notify the application (OS sends interrupt)
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Receive

● Synchronous
● Return data if there is a message

● Block on empty buffer
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Receive

● Synchronous
● Return data if there is a message

● Block on empty buffer

● Asynchronous
● Return data if there is a message

● Return status if there is no message (probe)
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Implementing Mailboxes

● What is the conceptual problem for OS implementation 
here?
● Assume sender and receiver are on the same machine
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Implementing Mailboxes

● What is the conceptual problem for OS implementation 
here?
● Assume sender and receiver are on the same machine:

● Buffering
● Managing mailboxes: 

▪ between a pair or processes? 
▪ One for each process?

● Process Termination
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Buffering

● No buffering
● Sender must wait until the receiver receives the message
● Rendezvous on each message

● Bounded buffer
● Finite size
● Sender blocks when the buffer is full
● Receiver blocks when the buffer is empty
● Using lock/condition variable (or semaphore) 
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Direct Communication

● Each process must name the sending or receiving process

● A communication link
● is set up between the pair of processes

● is associated with exactly two processes

● exactly one link between each pair of processes

P: send( process Q, msg )

Q: recv( process P, msg )
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Producer-Consumer with Message 
passing

Producer(){

  while (1) {

    …

    produce item

    …

    send( consumer, item);

  }

}

Consumer(){

  while (1) {

    recv( producer, item );

    …

    consume item

    …

   }

}
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Indirect Communication

● Use a “mailbox” or “ports” to allow many-to-many communication
● Mailbox typically owned by the OS

● Requires open/close a mailbox before allowed to use it

● A “link” 
● is set up among processes only if they have a shared mailbox
● Can be associated with more than two processes

P: open (mailbox); send( mailbox, msg); 
   close(mailbox)
Q: open (mailbox); recv( mailbox, msg );  
   close(mailbox)
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Process Termination

● S has terminated
● Problem: R may be blocked forever

● Solution: R pings S once a while

● R has terminated
● Problem: S runs out buffer and will be blocked forever
● Solution: S checks on R occasionally

Process

Sender

Process

Receiver
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IPC Big Debate: Message passing v/s 
Shared memory

● Two programming models are equally powerful

● But result in very different-looking programming styles

● Do you think shared-data or message-passing is easier to work with?
● Programming? Debugging?

● What about concurrent programming across machines?
● Message passing is more natural

● Shared memory can still be simulated in software
● Distributed Shared Memory (DSM) – hot topic in 80-90’s, coming back these years


